skip to main content


Search for: All records

Creators/Authors contains: "Ricarte, Angelo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fueling and feedback couple supermassive black holes (SMBHs) to their host galaxies across many orders of magnitude in spatial and temporal scales, making this problem notoriously challenging to simulate. We use a multi-zone computational method based on the general relativistic magnetohydrodynamic (GRMHD) code KHARMA that allows us to span 7 orders of magnitude in spatial scale, to simulate accretion onto a non-spinning SMBH from an external medium with a Bondi radius ofRB≈ 2 × 105GM/c2, whereMis the SMBH mass. For the classic idealized Bondi problem, spherical gas accretion without magnetic fields, our simulation results agree very well with the general relativistic analytic solution. Meanwhile, when the accreting gas is magnetized, the SMBH magnetosphere becomes saturated with a strong magnetic field. The density profile varies as ∼r−1rather thanr−3/2and the accretion rateṀis consequently suppressed by over 2 orders of magnitude below the Bondi rateṀB. We find continuous energy feedback from the accretion flow to the external medium at a level of102Ṁc25×105ṀBc2. Energy transport across these widely disparate scales occurs via turbulent convection triggered by magnetic field reconnection near the SMBH. Thus, strong magnetic fields that accumulate on horizon scales transform the flow dynamics far from the SMBH and naturally explain observed extremely low accretion rates compared to the Bondi rate, as well as at least part of the energy feedback.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    The recent Chandra-JWST discovery of a quasar in thez≈ 10.1 galaxy UHZ1 reveals that accreting supermassive black holes were already in place 470 million years after the Big Bang. The Chandra X-ray source detected in UHZ1 is a Compton-thick quasar with a bolometric luminosity ofLbol∼ 5 × 1045erg s−1, which corresponds to an estimated black hole (BH) mass of ∼4 × 107M, assuming accretion at the Eddington rate. JWST NIRCAM and NIRSpec data yield a stellar mass estimate for UHZ1 comparable to its BH mass. These characteristics are in excellent agreement with prior theoretical predictions for a unique class of transient, high-redshift objects, overmassive black hole galaxies (OBGs) by Natarajan et al., that harbor a heavy initial black hole seed that likely formed from the direct collapse of the gas. Given the excellent agreement between the observed multiwavelength properties of UHZ1 and theoretical model template predictions, we suggest that UHZ1 is the first detected OBG candidate. Our assertion rests on multiple lines of concordant evidence between model predictions and the following observed properties of UHZ1: its X-ray detection and the estimated ratio of the X-ray flux to the IR flux, which is consistent with theoretical expectations for a heavy initial BH seed; its high measured redshift ofz≈ 10.1, as predicted for the transient OBG stage (9 <z< 12); the amplitude and shape of the detected JWST spectral energy distribution (SED) between 1 and 5μm, which is in very good agreement with simulated template SEDs for OBGs; and the extended JWST morphology of UHZ1, which is suggestive of a recent merge and is also expected for the formation of transient OBGs. As the first OBG candidate, UHZ1 provides compelling evidence for the formation of heavy initial seeds from direct collapse in the early Universe.

     
    more » « less
  3. Abstract

    A spinning black hole (BH) accreting from a disk of strongly magnetized plasma via a magnetically arrested disk is known to produce an efficient electromagnetic jet powered by the BH’s spin energy. We present general relativistic radiative magnetohydrodynamic simulations of magnetically arrested systems covering a range of sub- to super-Eddington accretion rates. Using the numerical results from these simulations, we develop formulae to describe the magnetization, jet efficiency, and spin evolution of an accreting BH as a function of its spin and accretion rate. A BH with near-Eddington accretion experiences a mild degree of spin-down because of angular momentum loss through the jet, leading to an equilibrium spin of 0.8 rather than 1.0 at the Eddington limit. As the accretion rate increases above Eddington, the spin-down effect becomes progressively stronger, ultimately converging on previous predictions based on nonradiative simulations. In particular, spin evolution drives highly super-Eddington systems toward a BH spin near zero. The formulae developed in this letter may be applied to galaxy- and cosmological-scale simulations that include BHs. If magnetically arrested disk accretion is common among supermassive BHs, the present results have broad implications for active galactic nucleus feedback and cosmological spin evolution.

     
    more » « less
    Free, publicly-accessible full text available August 31, 2024
  4. ABSTRACT

    In this paper, we introduce a novel data augmentation methodology based on Conditional Progressive Generative Adversarial Networks (CPGAN) to generate diverse black hole (BH) images, accounting for variations in spin and electron temperature prescriptions. These generated images are valuable resources for training deep learning algorithms to accurately estimate black hole parameters from observational data. Our model can generate BH images for any spin value within the range of [−1, 1], given an electron temperature distribution. To validate the effectiveness of our approach, we employ a convolutional neural network to predict the BH spin using both the GRMHD images and the images generated by our proposed model. Our results demonstrate a significant performance improvement when training is conducted with the augmented data set while testing is performed using GRMHD simulated data, as indicated by the high R2 score. Consequently, we propose that GANs can be employed as cost-effective models for black hole image generation and reliably augment training data sets for other parametrization algorithms.

     
    more » « less
  5. ABSTRACT

    Horizon-scale observations of the jetted active galactic nucleus M87 are compared with simulations spanning a broad range of dissipation mechanisms and plasma content in three-dimensional general relativistic flows around spinning black holes. Observations of synchrotron radiation from radio to X-ray frequencies can be compared with simulations by adding prescriptions specifying the relativistic electron-plus-positron distribution function and associated radiative transfer coefficients. A suite of time-varying simulations with various spins, plasma magnetizations and turbulent heating and equipartition-based emission prescriptions (and piecewise combinations thereof) is chosen to represent distinct possibilities for the M87 jet/accretion flow/black hole system. Simulation jet morphology, polarization, and variation are then ‘observed’ and compared with real observations to infer the rules that govern the polarized emissivity. Our models support several possible spin/emission model/plasma composition combinations supplying the jet in M87, whose black hole shadow has been observed down to the photon ring at 230 GHz by the Event Horizon Telescope (EHT). Net linear polarization and circular polarization constraints favour magnetically arrested disc (MAD) models whereas resolved linear polarization favours standard and normal evolution (SANE) in our parameter space. We also show that some MAD cases dominated by intrinsic circular polarization have near-linear V/I dependence on un-paired electron or positron content while SANE polarization exhibits markedly greater positron-dependent Faraday effects – future probes of the SANE/MAD dichotomy and plasma content with the EHT. This is the second work in a series also applying the ‘observing’ simulations methodology to near-horizon regions of supermassive black holes in Sgr A* and 3C 279.

     
    more » « less
  6. ABSTRACT

    Massive black holes in the centres of galaxies today must have grown by several orders of magnitude from seed black holes formed at early times. Detecting a population of intermediate mass black holes (IMBHs) can provide constraints on these elusive BH seeds. Here, we use the large volume cosmological hydrodynamical simulation Astrid, which includes IMBH seeds and dynamical friction to investigate the population of IMBH seeds. Dynamical friction is largely inefficient at sinking and merging seed IMBHs at high-z. This leads to an extensive population (several hundred per galaxy) of wandering IMBHs in large haloes at $z\sim 2$. A small fraction of these IMBHs are detectable as HLXs, Hyper Luminous X-ray sources. Importantly, at $z\sim 2$, IMBHs mergers produce the peak of GW events. We find close to a million GW events in Astrid between $z=\rm{2\!-\!3}$ involving seed IMBH mergers. These GW events (almost all detectable by LISA) at cosmic noon should provide strong constraints on IMBH seed models and their formation mechanisms. At the centre of massive galaxies, where the number of IMBHs can be as high as 10–100, SMBH-IMBH pairs can form. These Intermediate mass ratio inspirals (IMRIs) and extreme mass ratio inspirals (EMRIs), will require the next generation of milli-$\mu$Hz space-based GW interferometers to be detected. Large populations of IMBHs around massive black holes will probe their environments and MBH causal structure.

     
    more » « less
  7. While supermassive black-hole masses have been cataloged across cosmic time, only a few dozen of them have robust spin measurements. By extending and improving the existing Event Horizon Telescope (EHT) array, the next-generation Event Horizon Telescope (ngEHT) will enable multifrequency, polarimetric movies on event-horizon scales, which will place new constraints on the space-time and accretion flow. By combining this information, it is anticipated that the ngEHT may be able to measure tens of supermassive black-hole masses and spins. In this white paper, we discuss existing spin measurements and many proposed techniques with which the ngEHT could potentially measure spins of target supermassive black holes. Spins measured by the ngEHT would represent a completely new sample of sources that, unlike pre-existing samples, would not be biased towards objects with high accretion rates. Such a sample would provide new insights into the accretion, feedback, and cosmic assembly of supermassive black holes. 
    more » « less
  8. ABSTRACT

    The Event Horizon Telescope (EHT) collaboration has produced the first resolved images of the supermassive black holes at the centre of our galaxy and at the centre of the elliptical galaxy M87. As both technology and analysis pipelines improve, it will soon become possible to produce spectral index maps of black hole accretion flows on event horizon scales. In this work, we predict spectral index maps of both M87* and Sgr A* by applying the general relativistic radiative transfer (GRRT) code ipole to a suite of general relativistic magnetohydrodynamic (GRMHD) simulations. We analytically show that the spectral index increases with increasing magnetic field strength, electron temperature, and optical depth. Consequently, spectral index maps grow more negative with increasing radius in almost all models, since all of these quantities tend to be maximized near the event horizon. Additionally, photon ring geodesics exhibit more positive spectral indices, since they sample the innermost regions of the accretion flow with the most extreme plasma conditions. Spectral index maps are sensitive to highly uncertain plasma heating prescriptions (the electron temperature and distribution function). However, if our understanding of these aspects of plasma physics can be tightened, even the spatially unresolved spectral index around 230 GHz can be used to discriminate between models. In particular, Standard and Normal Evolution (SANE) flows tend to exhibit more negative spectral indices than Magnetically Arrested Disc (MAD) flows due to differences in the characteristic magnetic field strength and temperature of emitting plasma.

     
    more » « less
  9. The Event Horizon Telescope (EHT) Collaboration has successfully produced images of two supermassive black holes, enabling novel tests of black holes and their accretion flows on horizon scales. The EHT has so far published total intensity and linear polarization images, while upcoming images may include circular polarization, rotation measure, and spectral index, each of which reveals different aspects of the plasma and space-time. The next-generation EHT (ngEHT) will greatly enhance these studies through wider recorded bandwidths and additional stations, leading to greater signal-to-noise, orders of magnitude improvement in dynamic range, multi-frequency observations, and horizon-scale movies. In this paper, we review how each of these different observables informs us about the underlying properties of the plasma and the spacetime, and we discuss why polarimetric studies are well-suited to measurements with sparse, long-baseline coverage. 
    more » « less
  10. Abstract We present an in-depth analysis of the newly proposed correlation function in visibility space, between the E and B modes of linear polarization, hereafter the EB correlation, for a set of time-averaged general relativistic magnetohydrodynamical simulations compared with the phase map from different semianalytic models and the Event Horizon Telescope (EHT) 2017 data for M87*. We demonstrate that the phase map of time-averaged EB correlation contains novel information that might be linked to black hole (BH) spin, accretion state, and electron temperature. A detailed comparison with a semianalytic approach with different azimuthal expansion modes shows that to recover the morphology of real/imaginary part of the correlation function and its phase, we require higher orders of azimuthal modes. To extract the phase features, we use Zernike polynomial reconstruction developing an empirical metric to break degeneracies between models with different BH spins that are qualitatively similar. We use a set of geometrical ring models with various magnetic and velocity field morphologies, showing that both the image space and visibility-based EB -correlation morphologies in magnetically arrested disk  simulations can be explained with simple fluid and magnetic field geometries as used in ring models. Standard and normal evolutions by contrast are harder to model, demonstrating that the simple fluid and magnetic field geometries of ring models are not sufficient to describe them owing to higher Faraday rotation depths. A qualitative comparison with the EHT data demonstrates that some of the features in the phase of EB correlation might be well explained by the current models for BH spins and electron temperatures, while others require larger theoretical surveys. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024